
EPDiy
Release 2.0.0

Valentin Roland

Jan 22, 2024

QUICKSTART:

1 About 1
1.1 Display Types . 1

2 Getting Started 5
2.1 Getting your Board . 5
2.2 Calibrate VCOM . 5
2.3 Flashing the demo . 7
2.4 Use with esp-idf . 8
2.5 Use with Arduino . 8

3 Fonts, Images, Waveforms 9
3.1 Generating Font Files . 9
3.2 Generating Images . 10
3.3 Converting Waveforms . 10

4 Tips & Tricks 11
4.1 Temperature Dependence . 11
4.2 Deep Sleep Current . 11
4.3 Adding a New Display . 11

5 Library API 13
5.1 Highlevel API . 13
5.2 Complete API . 16
5.3 Internals . 26
5.4 Board-Specific Extensions . 30

Index 33

i

ii

CHAPTER

ONE

ABOUT

EPDiy is a driver board for e-Paper (or E-ink) displays.

1.1 Display Types

The EPDiy driver board targets multiple E-Paper displays. As the driving method for all matrix-based E-ink displays
seems to be more or less the same, only the right connector and timings are needed. A table of supported displays is
mainained in the README.md file.

Some of the supported displays are showcased below.

1.1.1 ED097OC4

The ED097OC4 was the original target of this project. It is an 9.7 inch screen, with a resolution of 1200 * 825 pixels
(150dpi). It is fairly available on Ebay and AliExpress, for around 30$ to 35$. There is also a lower contrast version
(ED097OC1) which also works.

1

EPDiy, Release 2.0.0

1.1.2 ED060SC4

This is a 6 inch display, with a 800 * 600 resolution. With 150dpi as well, it has about half the total display area of the
ED097OC4. To connect this display, the 39-pin connector on the back has to be populated. It is also the display a lot
of experimentation was done with (see Thanks To), so there are alternative controllers available. Besides the obvious
difference in size, this display is cheaper (~20$) and also refreshes slightly faster than the ED097OC4.

2 Chapter 1. About

EPDiy, Release 2.0.0

1.1.3 ED097TC2

Information on this display should be taken with a grain of salt. One of the displays I ordered as ED097OC4 came
as ED097TC2, and upon testing it also exhibited noticably better contrast and a more responsive electro-phoretic
medium. The ribbon connector looked like a ED097TC2 as well, or like the 9.7 inch screens offered by Waveshare
<https://www.waveshare.com/9.7inch-e-Paper.htm> (which is sold for a lot more). If you are on the lookout for such a
display keep in mind the authenticity of my sample is disputable and resolution and connector type should be double-
checked.

1.1. Display Types 3

EPDiy, Release 2.0.0

4 Chapter 1. About

CHAPTER

TWO

GETTING STARTED

2.1 Getting your Board

At the current point in time, there is no official way to buy an epdiy board. Fortunately, it is quite easy to order your
own. There are many PCB prototype services that will manufacture boards for a low price.

To use one of those services, upload the “Gerber files”, usually provided as a zip file, to the service. You can find all
the available hardware listed on the Hardware Page.

2.1.1 Choosing and Finding Parts

The parts needed to assemble the epdiy board are listed in the BOM.csv file. Commodity parts like resistors, capacitors,
coils and diodes are interchangable, as long as they fit the footprint. When in doubt, use the parts listed in the BOM
file.

However, some parts are not as common, especially the connectors. Most of them can be found on sites like eBay or
AliExpress.

Tips:

• Use the WROVER-B module instead of other WROVER variants. This module exhibits a low deep sleep
current and is proven to work.

• The LT1945 voltage booster seems to be out of stock with some distributors, but they are available cheaply
from AliExpress.

2.2 Calibrate VCOM

Note: Only for old boards

This is only needed with boards prior to revision 6. From revision 6 onwards, VCOM can be set in software via
epd_set_vcom(..).

EPaper displays use electrical fields to drive colored particles. One of the required voltages, VCOM (Common Voltage)
is display-dependent and must be calibrated for each display individually.

Fortunately, the VCOM voltage is usually printed on the display, similar to this:

5

https://vroland.github.io/epdiy-hardware/

EPDiy, Release 2.0.0

The VCOM value is usually between -1V and -3V.

For the v6 board, you can enter the desired VCOM value in make menuconfig. No interaction is required.

For the older models, use the trimmer marked RV1. You can measure the VCOM on the VCOM test pad (if your board
has one) or directly at the amplifier:

6 Chapter 2. Getting Started

EPDiy, Release 2.0.0

Note: Although most boards do not have it yet, image quality for partial updates can be improved by adding a (at
least) 4.7uF capacitor between VCOM and GND. When adding this capacitor, take care with the polarity as VCOM is
negative!

2.3 Flashing the demo

First, connect you board with the computer. In the output of lsusb you should find something like:

Bus 001 Device 048: ID 1a86:7523 QinHeng Electronics HL-340 USB-Serial adapter

This means the serial adapter is working and there a serial like /dev/ttyUSB0 should appear.

Next, make sure you have the Espressif IoT Development Framework installed. The current stable (and tested) version
is 4.0. For instructions on how to get started with the IDF, please refer to their documentation.

Then, clone the epdiy git repository (and its submodules):

git clone --recursive https://github.com/vroland/epdiy

Now, (after activating the IDF environment) you should be able to build the demo:

2.3. Flashing the demo 7

https://github.com/espressif/esp-idf
https://docs.espressif.com/projects/esp-idf/en/stable/get-started/

EPDiy, Release 2.0.0

cd examples/demo/
idf.py build

Hold down the BOOT button on your board, while quickly pressing the RESET button. The ESP module is now in boot
mode. Upload the demo program to the board with

idf.py flash -b 921600 && idf.py monitor

Pressing RESET a second time should start the demo program, which will output some information on the serial monitor.

With the board power turned off, connect your display. Power on the board. You should now see the demo output on
your display.

2.4 Use with esp-idf

The neccessary functionality for driving an EPD display is encapsulated in the components/epdiy IDF component.
To use it in you own project, simply copy the epdiy folder to your project-local components directory. The component
sould be automatically detected by the framework, you can now use

#include "epdiy.h"

to use the EPD driver’s Library API .

2.4.1 Selecting a Board and Display Type

With epdiy 2.0.0, the display type and board are set via epd_init().

2.4.2 Enable SPI RAM

The ESP32-WROVER-B comes with an additional 8MB external PSRAM, where the epdiy is going to store ~2MB
for its internal frame buffers. Since it is dynamically allocated from the heap, and the built-in SRAM of ~160KB is
insufficient, we need to enable external SPI RAM first.

Open the menuconfig again (see above) and navigate to Component config -> ESP32-Specific -> Support
for external, SPI-connected RAM and enable it.

2.5 Use with Arduino

Epdiy can be used as an Arduino library. Additionally, epdiy comes with board definitions for its supported boards,
which must be installed separately. To install epdiy to work with the Arduino IDE (>= 1.8), place the downloaded
repository into your Arduino libraries folder.

Alternatively, it is possible to use the Arduino APIs as an IDF component, which allows you to use the Arduino ecosys-
tem (Except for a different build process). This gives you full access to ESP-IDF options.

8 Chapter 2. Getting Started

https://github.com/espressif/arduino-esp32/blob/master/docs/esp-idf_component.md

CHAPTER

THREE

FONTS, IMAGES, WAVEFORMS

The ESP32 is, although fairly capable, still a microcontroller. Thus, with memory and computational resources limited,
it is useful to do as much of the processing for displaying fonts and images on a computer.

Epdiy comes with scripts that convert fonts, images and waveforms to C headers, that you can then simply #include in
your project.

3.1 Generating Font Files

Fonts can only be used by the driver in a special header format (inspired by the Adafruit GFX library), which need to
be generated from TTF fonts. For this purpose, the scripts/fontconvert.py utility is provided. .. code-block:

fontconvert.py [-h] [--compress] [--additional-intervals ADDITIONAL_INTERVALS] name size␣
→˓fontstack [fontstack ...]

The following example generates a header file for Fira Code at size 10, where glyphs that are not found in Fira Code
will be taken from Symbola: .. code-block:

./fontconvert.py FiraCode 10 /usr/share/fonts/TTF/FiraCode-Regular.ttf /usr/share/fonts/
→˓TTF/Symbola.ttf > ../examples/terminal/main/firacode.h

You can change which unicode character codes are to be exported by specifying additional ranges of unicode code
points with --additional-intervals. Intervals are written as min,max. To add multiple intervals, you can specify
the --additional-intervals option multiple times. .. code-block:

./fontconvert.py ... --additional-intervals 0xE0A0,0xE0A2 --additional-intervals 0xE0B0,
→˓0xE0B3 ...

The above command would add two addtitional ranges.

You can enable compression with --compress, which reduces the size of the generated font but comes at a performance
cost.

If the generated font files with the default characters are too large for your application, you can modify intervals in
fontconvert.py.

9

EPDiy, Release 2.0.0

3.2 Generating Images

The process for converting images is very similar to converting fonts. Run the scripts/imgconvert.py script with
an input image, an image name and an output image. .. code-block:

imgconvert.py [-h] -i INPUTFILE -n NAME -o OUTPUTFILE [-maxw MAX_WIDTH] [-maxh MAX_
→˓HEIGHT]

The image is converted to grayscale scaled down to match fit into MAX_WIDTH and MAX_HEIGHT (1200x825 by default).
For accurate grayscale it is advisable to color-grade and scale the image with a dedicated tool before converting it.

OUTPUTFILE will be a C header with the following constants defined:

• {NAME}_width is the width of the image

• {NAME}_height is the height of the image

• {NAME}_data is the image data in 4 bit-per-pixel grayscale format.

3.3 Converting Waveforms

Note: Waveform Timings and V7

Epdiy builtin waveforms currently use variable frame timings to reduce the number of update cycles required. This is
currently not implemented in V7. Hence, for best results it is recommended to use Vendor waveforms where available,
which use constant frame timings.

In comercial applications, displays are driven with information in so-called Waveform Files. These specify how which
pulses to apply to the pixel to transition from one gray tone to another. Unfortunately, they are display-specific and
proprietary. However, while they are not freely available, they can be obtained through a number of ways:

• Being a large customer of E-Ink. Unfortunately not doable for mere mortals.

• Finding them scattered around the internet. Examples include the MobileRead forums or the NXP Support forum.

• Extracting from e-Reader firmware.

• Extracting from a flash chip that comes with some displays. More on this can be found here.

Waveforms usually come with a *.wbf file extension.

If you have a matching waveform file for your display, it can be converted to a waveform header that’s usable by epdiy.
The advantage of using vendor waveforms include the availability of all implemented modes in the waveform file,
support of a wide range of temperatures and more accurate grayscale-to-grayscale transitions.

As a first step, the waveform data is extracted from the original waveform file and stored in JSON format. This can be
done using a modified version of inkwave by Marc Juul.

Once a matching JSON file is obtained, the scripts/waveform_hdrgen.py utility can be used to generate a waveform
header, which can be included in your project.

waveform_hdrgen.py [-h] [--list-modes] [--temperature-range TEMPERATURE_RANGE] [--export-
→˓modes EXPORT_MODES] name

With the --list-modes option, a list of all included modes is printed. name specifies a name for the generated
EpdWaveform object. Additionally, the temperature range and modes to export can be limited in order to reduce file
size. An example for the usage of this script can be found in the top-level Makefile of the epdiy repository.

10 Chapter 3. Fonts, Images, Waveforms

https://www.mobileread.com/
https://community.nxp.com/t5/i-MX-Processors/How-to-convert-wbf-waveform-file-to-wf-file/m-p/467926/highlight/true
https://hackaday.io/project/21168-fpga-eink-controller/log/57822-waveforms-binary-extract
https://github.com/vroland/inkwave
https://github.com/fread-ink/inkwave

CHAPTER

FOUR

TIPS & TRICKS

4.1 Temperature Dependence

The display refresh speed depends on the environmental temperature. Thus, if your room temperature is significantly
different from ~22°C, grayscale accuracy might be affected when using the builtin waveform. This can be mitigated
by using a different timing curve, but this would require calibrating the display timings at that temperature. If you did
this for some temperature other than room temperature, please submit a pull request!

4.2 Deep Sleep Current

Board Revision V5 is optimized for running from a battery thanks to its low deep sleep current consumption. In order
to achieve the lowest possible deep sleep current, call

epd_deinit()

before going to deep sleep. This will de-initialize the I2S peripheral used to drive the diplay and bring the pins used by
epdiy to a low-power state. You should be able to achieve a deep-sleep current of less than 13µA. If your deep-sleep
current is much higher, please check your attached peripherals. With some modules, you have to isolate GPIO 12 before
going to deep sleep:

rtc_gpio_isolate(GPIO_NUM_12)

4.3 Adding a New Display

This section is work-in-progress.

• Add display definitions in displays.c and epd_display.h.

• Include waveform in bulitin_waveforms.c

• Calibrate timing curve in scripts/generate_epdiy_waveforms.py.

• Add to the list of displays to build waveforms for in Makefile

• Document

11

EPDiy, Release 2.0.0

12 Chapter 4. Tips & Tricks

CHAPTER

FIVE

LIBRARY API

5.1 Highlevel API

High-level API for drawing to e-paper displays.

The functions in this library provide a simple way to manage updates of e-paper display. To use it, follow the steps
below:

1. First, we declare a global object that manages the display state.

EpdiyHighlevelState hl;

2. Then, the driver and framebuffers must be initialized.

epd_init(EPD_LUT_1K);
hl = epd_hl_init(EPD_BUILTIN_WAVEFORM);

3. Now, we can draw to the allocated framebuffer, using the draw and text functions defined in epdiy.h. This will
not yet update the display, but only its representation in memory.

// A reference to the framebuffer
uint8_t* fb = epd_hl_get_framebuffer(&hl);

// draw a black rectangle
EpdRect some_rect = {

.x = 100,

.y = 100,

.width = 100,

.height = 100
};
epd_fill_rect(some_rect, 0x0, fb);

// write a message
int cursor_x = 100;
int cursor_y = 300;
epd_write_default(&FiraSans, "Hello, World!", &cursor_x, &cursor_y, fb);

// finally, update the display!
int temperature = 25;
epd_poweron();

(continues on next page)

13

EPDiy, Release 2.0.0

(continued from previous page)

EpdDrawError err = epd_hl_update_screen(&hl, MODE_GC16, temperature);
epd_poweroff();

That’s it! For many application, this will be enough. For special applications and requirements, have a closer
look at the epdiy.h header.

5.1.1 Colors

Since most displays only support 16 colors, we’re only using the upper 4 bits (nibble) of a byte to detect the color.

char pixel_color = color & 0xF0;

So keep in mind, when passing a color to any function, to always set the upper 4 bits, otherwise the color would be
black.

Possible colors are 0xF0 (white) through 0x80 (median gray) til 0x00 (black).

Defines

EPD_BUILTIN_WAVEFORM

Functions

EpdiyHighlevelState epd_hl_init(const EpdWaveform *waveform)

Initialize a state object. This allocates two framebuffers and an update buffer for the display in the external
PSRAM. In order to keep things simple, a chip reset is triggered if this fails.

Parameters

• waveform – The waveform to use for updates. If you did not create your own, this will be
EPD_BUILTIN_WAVEFORM.

Returns
An initialized state object.

uint8_t *epd_hl_get_framebuffer(EpdiyHighlevelState *state)
Get a reference to the front framebuffer. Use this to draw on the framebuffer before updating the screen with
epd_hl_update_screen().

enum EpdDrawError epd_hl_update_screen(EpdiyHighlevelState *state, enum EpdDrawMode mode, int
temperature)

Update the EPD screen to match the content of the front frame buffer. Prior to this, power to the display must be
enabled via epd_poweron() and should be disabled afterwards if no immediate additional updates follow.

Parameters

• state – A reference to the EpdiyHighlevelState object used.

• mode – The update mode to use. Additional mode settings like the framebuffer format or
previous display state are determined by the driver and must not be supplied here. In most
cases, one of MODE_GC16 and MODE_GL16 should be used.

• temperature – Environmental temperature of the display in °C.

14 Chapter 5. Library API

EPDiy, Release 2.0.0

Returns
EPD_DRAW_SUCCESS on sucess, a combination of error flags otherwise.

enum EpdDrawError epd_hl_update_area(EpdiyHighlevelState *state, enum EpdDrawMode mode, int
temperature, EpdRect area)

Update an area of the screen to match the content of the front framebuffer. Supplying a small area to update can
speed up the update process. Prior to this, power to the display must be enabled via epd_poweron() and should
be disabled afterwards if no immediate additional updates follow.

Parameters

• state – A reference to the EpdiyHighlevelState object used.

• mode – See epd_hl_update_screen().

• temperature – Environmental temperature of the display in °C.

• area – Area of the screen to update.

Returns
EPD_DRAW_SUCCESS on sucess, a combination of error flags otherwise.

void epd_hl_set_all_white(EpdiyHighlevelState *state)
Reset the front framebuffer to a white state.

Parameters

• state – A reference to the EpdiyHighlevelState object used.

void epd_fullclear(EpdiyHighlevelState *state, int temperature)
Bring the display to a fully white state and get rid of any remaining artifacts.

struct EpdiyHighlevelState
#include <epd_highlevel.h> Holds the internal state of the high-level API.

Public Members

uint8_t *front_fb
The “front” framebuffer object.

uint8_t *back_fb
The “back” framebuffer object.

uint8_t *difference_fb
Buffer for holding the interlaced difference image.

bool *dirty_lines
Tainted lines based on the last difference calculation.

const EpdWaveform *waveform
The waveform information to use.

5.1. Highlevel API 15

EPDiy, Release 2.0.0

5.2 Complete API

A driver library for drawing to an EPD.

Defines

EPD_MODE_DEFAULT

The default draw mode (non-flashy refresh, whith previously white screen).

Enums

enum EpdInitOptions
Global EPD driver options.

Values:

enumerator EPD_OPTIONS_DEFAULT
Use the default options.

enumerator EPD_LUT_1K
Use a small look-up table of 1024 bytes. The EPD driver will use less space, but performance may be
worse.

enumerator EPD_LUT_64K
Use a 64K lookup table. (default) Best performance, but permanently occupies a 64k block of internal
memory.

enumerator EPD_FEED_QUEUE_8
Use a small feed queue of 8 display lines. This uses less memory, but may impact performance.

enumerator EPD_FEED_QUEUE_32
Use a feed queue of 32 display lines. (default) Best performance, but larger memory footprint.

enum EpdDrawMode
The image drawing mode.

Values:

enumerator MODE_INIT
An init waveform. This is currently unused, use epd_clear() instead.

enumerator MODE_DU
Direct Update: Go from any color to black for white only.

enumerator MODE_GC16
Go from any grayscale value to another with a flashing update.

16 Chapter 5. Library API

EPDiy, Release 2.0.0

enumerator MODE_GC16_FAST
Faster version of MODE_GC16. Not available with default epdiy waveforms.

enumerator MODE_A2
Animation Mode: Fast, monochrom updates. Not available with default epdiy waveforms.

enumerator MODE_GL16
Go from any grayscale value to another with a non-flashing update.

enumerator MODE_GL16_FAST
Faster version of MODE_GL16. Not available with default epdiy waveforms.

enumerator MODE_DU4
A 4-grayscale version of MODE_DU. Not available with default epdiy waveforms.

enumerator MODE_GL4
Arbitrary transitions for 4 grayscale values. Not available with default epdiy waveforms.

enumerator MODE_GL16_INV
Not available with default epdiy waveforms.

enumerator MODE_EPDIY_WHITE_TO_GL16
Go from a white screen to arbitrary grayscale, quickly. Exclusively available with epdiy waveforms.

enumerator MODE_EPDIY_BLACK_TO_GL16
Go from a black screen to arbitrary grayscale, quickly. Exclusively available with epdiy waveforms.

enumerator MODE_EPDIY_MONOCHROME
Monochrome mode. Only supported with 1bpp buffers.

enumerator MODE_UNKNOWN_WAVEFORM

enumerator MODE_PACKING_8PPB
1 bit-per-pixel framebuffer with 0 = black, 1 = white. MSB is left is the leftmost pixel, LSB the rightmost
pixel.

enumerator MODE_PACKING_2PPB
4 bit-per pixel framebuffer with 0x0 = black, 0xF = white. The upper nibble corresponds to the left pixel.
A byte cannot wrap over multiple rows, images of uneven width must add a padding nibble per line.

enumerator MODE_PACKING_1PPB_DIFFERENCE
A difference image with one pixel per byte. The upper nibble marks the “from” color, the lower nibble the
“to” color.

5.2. Complete API 17

EPDiy, Release 2.0.0

enumerator PREVIOUSLY_WHITE
Assert that the display has a uniform color, e.g. after initialization. If MODE_PACKING_2PPB is specified, a
optimized output calculation can be used. Draw on a white background

enumerator PREVIOUSLY_BLACK
See PREVIOUSLY_WHITE. Draw on a black background

enum EpdRotation
Display software rotation. Sets the rotation for the purposes of the drawing and font functions Use
epd_set_rotation(EPD_ROT_*) to set it using one of the options below Use epd_get_rotation() in case you need
to read this value

Values:

enumerator EPD_ROT_LANDSCAPE

enumerator EPD_ROT_PORTRAIT

enumerator EPD_ROT_INVERTED_LANDSCAPE

enumerator EPD_ROT_INVERTED_PORTRAIT

enum EpdDrawError
Possible failures when drawing.

Values:

enumerator EPD_DRAW_SUCCESS

enumerator EPD_DRAW_INVALID_PACKING_MODE
No valid framebuffer packing mode was specified.

enumerator EPD_DRAW_LOOKUP_NOT_IMPLEMENTED
No lookup table implementation for this mode / packing.

enumerator EPD_DRAW_STRING_INVALID
The string to draw is invalid.

enumerator EPD_DRAW_NO_DRAWABLE_CHARACTERS
The string was not empty, but no characters where drawable.

enumerator EPD_DRAW_FAILED_ALLOC
Allocation failed.

enumerator EPD_DRAW_GLYPH_FALLBACK_FAILED
A glyph could not be drawn, and not fallback was present.

18 Chapter 5. Library API

EPDiy, Release 2.0.0

enumerator EPD_DRAW_INVALID_CROP
The specified crop area is invalid.

enumerator EPD_DRAW_MODE_NOT_FOUND
No such mode is available with the current waveform.

enumerator EPD_DRAW_NO_PHASES_AVAILABLE
The waveform info file contains no applicable temperature range.

enumerator EPD_DRAW_INVALID_FONT_FLAGS
An invalid combination of font flags was used.

enumerator EPD_DRAW_EMPTY_LINE_QUEUE
The waveform lookup could not keep up with the display output.

Reduce the display clock speed.

enum EpdFontFlags
Font drawing flags.

Values:

enumerator EPD_DRAW_BACKGROUND
Draw a background.

Take the background into account when calculating the size.

enumerator EPD_DRAW_ALIGN_LEFT
Left-Align lines.

enumerator EPD_DRAW_ALIGN_RIGHT
Right-align lines.

enumerator EPD_DRAW_ALIGN_CENTER
Center-align lines.

Functions

void epd_init(const EpdBoardDefinition *board, const EpdDisplay_t *display, enum EpdInitOptions options)
Initialize the ePaper display

const EpdDisplay_t *epd_get_display()
Get the configured display.

int epd_width()
Get the EPD display’s witdth.

int epd_height()
Get the EPD display’s height.

5.2. Complete API 19

EPDiy, Release 2.0.0

void epd_set_vcom(uint16_t vcom)

Set the display common voltage if supported.

Voltage is set as absolute value in millivolts. Although VCOM is negative, this function takes a positive (absolute)
value.

float epd_ambient_temperature()
Get the current ambient temperature in °C, if the board has a sensor.

Get the current ambient temperature in °C, if supported by the board. Requires the display to be powered on.

enum EpdRotation epd_get_rotation()
Get the display rotation value

void epd_set_rotation(enum EpdRotation rotation)
Set the display rotation: Affects the drawing and font functions

int epd_rotated_display_width()
Get screen width after rotation

int epd_rotated_display_height()
Get screen height after rotation

void epd_deinit()
Deinit the ePaper display

void epd_poweron()
Enable display power supply.

void epd_poweroff()
Disable display power supply.

void epd_clear()
Clear the whole screen by flashing it.

void epd_clear_area(EpdRect area)
Clear an area by flashing it.

Parameters

• area – The area to clear.

void epd_clear_area_cycles(EpdRect area, int cycles, int cycle_time)
Clear an area by flashing it.

Parameters

• area – The area to clear.

• cycles – The number of black-to-white clear cycles.

• cycle_time – Length of a cycle. Default: 50 (us).

EpdRect epd_full_screen()

Returns
Rectancle representing the whole screen area.

void epd_copy_to_framebuffer(EpdRect image_area, const uint8_t *image_data, uint8_t *framebuffer)
Draw a picture to a given framebuffer.

Parameters

20 Chapter 5. Library API

EPDiy, Release 2.0.0

• image_area – The area to copy to. width and height of the area must correspond to the
image dimensions in pixels.

• image_data – The image data, as a buffer of 4 bit wide brightness values. Pixel data is
packed (two pixels per byte). A byte cannot wrap over multiple rows, images of uneven
width must add a padding nibble per line.

• framebuffer – The framebuffer object, which must be epd_width() / 2 *
epd_height() large.

void epd_draw_pixel(int x, int y, uint8_t color, uint8_t *framebuffer)
Draw a pixel a given framebuffer.

Parameters

• x – Horizontal position in pixels.

• y – Vertical position in pixels.

• color – The gray value of the line (see Colors);

• framebuffer – The framebuffer to draw to,

void epd_draw_hline(int x, int y, int length, uint8_t color, uint8_t *framebuffer)
Draw a horizontal line to a given framebuffer.

Parameters

• x – Horizontal start position in pixels.

• y – Vertical start position in pixels.

• length – Length of the line in pixels.

• color – The gray value of the line (see Colors);

• framebuffer – The framebuffer to draw to, which must be epd_width() / 2 *
epd_height() bytes large.

void epd_draw_vline(int x, int y, int length, uint8_t color, uint8_t *framebuffer)
Draw a horizontal line to a given framebuffer.

Parameters

• x – Horizontal start position in pixels.

• y – Vertical start position in pixels.

• length – Length of the line in pixels.

• color – The gray value of the line (see Colors);

• framebuffer – The framebuffer to draw to, which must be epd_width() / 2 *
epd_height() bytes large.

void epd_fill_circle_helper(int x0, int y0, int r, int corners, int delta, uint8_t color, uint8_t *framebuffer)

void epd_draw_circle(int x, int y, int r, uint8_t color, uint8_t *framebuffer)
Draw a circle with given center and radius

Parameters

• x – Center-point x coordinate

• y – Center-point y coordinate

• r – Radius of the circle in pixels

5.2. Complete API 21

EPDiy, Release 2.0.0

• color – The gray value of the line (see Colors);

• framebuffer – The framebuffer to draw to,

void epd_fill_circle(int x, int y, int r, uint8_t color, uint8_t *framebuffer)
Draw a circle with fill with given center and radius

Parameters

• x – Center-point x coordinate

• y – Center-point y coordinate

• r – Radius of the circle in pixels

• color – The gray value of the line (see Colors);

• framebuffer – The framebuffer to draw to,

void epd_draw_rect(EpdRect rect, uint8_t color, uint8_t *framebuffer)
Draw a rectanle with no fill color

Parameters

• rect – The rectangle to draw.

• color – The gray value of the line (see Colors);

• framebuffer – The framebuffer to draw to,

void epd_fill_rect(EpdRect rect, uint8_t color, uint8_t *framebuffer)
Draw a rectanle with fill color

Parameters

• rect – The rectangle to fill.

• color – The gray value of the line (see Colors);

• framebuffer – The framebuffer to draw to,

void epd_draw_line(int x0, int y0, int x1, int y1, uint8_t color, uint8_t *framebuffer)
Draw a line

Parameters

• x0 – Start point x coordinate

• y0 – Start point y coordinate

• x1 – End point x coordinate

• y1 – End point y coordinate

• color – The gray value of the line (see Colors);

• framebuffer – The framebuffer to draw to,

void epd_draw_triangle(int x0, int y0, int x1, int y1, int x2, int y2, uint8_t color, uint8_t *framebuffer)
Draw a triangle with no fill color

Parameters

• x0 – Vertex #0 x coordinate

• y0 – Vertex #0 y coordinate

• x1 – Vertex #1 x coordinate

22 Chapter 5. Library API

EPDiy, Release 2.0.0

• y1 – Vertex #1 y coordinate

• x2 – Vertex #2 x coordinate

• y2 – Vertex #2 y coordinate

• color – The gray value of the line (see Colors);

• framebuffer – The framebuffer to draw to,

void epd_fill_triangle(int x0, int y0, int x1, int y1, int x2, int y2, uint8_t color, uint8_t *framebuffer)
Draw a triangle with color-fill

Parameters

• x0 – Vertex #0 x coordinate

• y0 – Vertex #0 y coordinate

• x1 – Vertex #1 x coordinate

• y1 – Vertex #1 y coordinate

• x2 – Vertex #2 x coordinate

• y2 – Vertex #2 y coordinate

• color – The gray value of the line (see Colors);

• framebuffer – The framebuffer to draw to,

EpdFontProperties epd_font_properties_default()
The default font properties.

void epd_get_text_bounds(const EpdFont *font, const char *string, const int *x, const int *y, int *x1, int *y1, int
*w, int *h, const EpdFontProperties *props)

Get the text bounds for string, when drawn at (x, y). Set font properties to NULL to use the defaults.

EpdRect epd_get_string_rect(const EpdFont *font, const char *string, int x, int y, int margin, const
EpdFontProperties *properties)

Returns a rect with the bounds of the text

Parameters

• font – : the font used to get the character sizes

• string – pointer to c string

• x – : left most position of rectangle

• y – : top most point of the rectangle

• margin – : to be pllied to the width and height

Returns
EpdRect with x and y as per the original and height and width adjusted to fit the text with the
margin added as well.

enum EpdDrawError epd_write_string(const EpdFont *font, const char *string, int *cursor_x, int *cursor_y,
uint8_t *framebuffer, const EpdFontProperties *properties)

Write text to the EPD.

enum EpdDrawError epd_write_default(const EpdFont *font, const char *string, int *cursor_x, int *cursor_y,
uint8_t *framebuffer)

Write a (multi-line) string to the EPD.

5.2. Complete API 23

EPDiy, Release 2.0.0

const EpdGlyph *epd_get_glyph(const EpdFont *font, uint32_t code_point)
Get the font glyph for a unicode code point.

void epd_push_pixels(EpdRect area, short time, int color)
Darken / lighten an area for a given time.

Parameters

• area – The area to darken / lighten.

• time – The time in us to apply voltage to each pixel.

• color – 1: lighten, 0: darken.

enum EpdDrawError epd_draw_base(EpdRect area, const uint8_t *data, EpdRect crop_to, enum EpdDrawMode
mode, int temperature, const bool *drawn_lines, const EpdWaveform
*waveform)

Base function for drawing an image on the screen. If It is very customizable, and the documentation below should
be studied carefully. For simple applications, use the epdiy highlevel api in “epd_higlevel.h”.

Parameters

• area – The area of the screen to draw to. This can be imagined as shifting the origin of the
frame buffer.

• data – A full framebuffer of display data. It’s structure depends on the chosen mode.

• crop_to – Only draw a part of the frame buffer. Set to epd_full_screen() to draw the
full buffer.

• mode – Specifies the Waveform used, the framebuffer format and additional information, like
if the display is cleared.

• temperature – The temperature of the display in °C. Currently, this is unused by the default
waveforms at can be set to room temperature, e.g. 20-25°C.

• drawn_lines – If not NULL, an array of at least the height of the image. Every line where
the corresponding value in lines is false will be skipped.

• waveform – The waveform information to use for drawing. If you don’t have special wave-
forms, use EPD_BUILTIN_WAVEFORM.

Returns
EPD_DRAW_SUCCESS on sucess, a combination of error flags otherwise.

EpdRect epd_difference_image_cropped(const uint8_t *to, const uint8_t *from, EpdRect crop_to, uint8_t
*interlaced, bool *dirty_lines, bool *previously_white, bool
*previously_black)

Calculate a MODE_PACKING_1PPB_DIFFERENCE difference image from two MODE_PACKING_2PPB (4 bit-per-
pixel) buffers. If you’re using the epdiy highlevel api, this is handled by the update functions.

Parameters

• to – The goal image as 4-bpp (MODE_PACKING_2PPB) framebuffer.

• from – The previous image as 4-bpp (MODE_PACKING_2PPB) framebuffer.

• crop_to – Only calculate the difference for a crop of the input framebuffers. The
interlaced will not be modified outside the crop area.

• interlaced – The resulting difference image in MODE_PACKING_1PPB_DIFFERENCE for-
mat.

24 Chapter 5. Library API

EPDiy, Release 2.0.0

• dirty_lines – An array of at least epd_height(). The positions corresponding to lines
where to and from differ are set to true, otherwise to false.

• previously_white – If not NULL, it is set to true if the considered crop of the from-
image is completely white.

• previously_black – If not NULL, it is set to true if the considered crop of the from-
image is completely black.

Returns
The smallest rectangle containing all changed pixels.

EpdRect epd_difference_image(const uint8_t *to, const uint8_t *from, uint8_t *interlaced, bool *dirty_lines)
Simplified version of epd_difference_image_cropped(), which considers the whole display frame buffer.

See epd_difference_image_cropped() for details.

uint8_t epd_get_pixel(int x, int y, int fb_width, int fb_height, const uint8_t *framebuffer)
Return the pixel color of a 4 bit image array x,y coordinates of the image pixel fb_width, fb_height dimensions

Returns
uint8_t 0-255 representing the color on given coordinates (as in epd_draw_pixel)

void epd_draw_rotated_image(EpdRect image_area, const uint8_t *image_buffer, uint8_t *framebuffer)
Draw an image reading pixel per pixel and being rotation aware (via epd_draw_pixel)

void epd_draw_rotated_transparent_image(EpdRect image_area, const uint8_t *image_buffer, uint8_t
*framebuffer, uint8_t transparent_color)

Draw an image reading pixel per pixel and being rotation aware (via epd_draw_pixel) With an optional transparent
color (color key transparency)

void epd_set_lcd_pixel_clock_MHz(int frequency)
Override the pixel clock when using the LCD driver for display output (Epdiy V7+). This may result in draws
failing if it’s set too high!

This method can be used to tune your application for maximum refresh speed, if you can guarantee the driver
can keep up.

struct EpdRect
#include <epdiy.h> An area on the display.

Public Members

int x
Horizontal position.

int y
Vertical position.

int width
Area / image width, must be positive.

int height
Area / image height, must be positive.

5.2. Complete API 25

EPDiy, Release 2.0.0

struct EpdFontProperties
#include <epdiy.h> Font properties.

Public Members

uint8_t fg_color
Foreground color.

uint8_t bg_color
Background color.

uint32_t fallback_glyph
Use the glyph for this codepoint for missing glyphs.

enum EpdFontFlags flags
Additional flags, reserved for future use.

5.3 Internals

Internal definitions and auxiliary data types.

Unless you want to extend the library itself (Which you are very welcome to do), you will most likely not need to know
about this file.

Defines

MINIMUM_FRAME_TIME

minimal draw time in ms for a frame layer, which will allow all particles to set properly.

MONOCHROME_FRAME_TIME

Frame draw time for monochrome mode in 1/10 us.

Variables

const EpdWaveform epdiy_ED060SC4

const EpdWaveform epdiy_ED097OC4

const EpdWaveform epdiy_ED047TC1

const EpdWaveform epdiy_ED047TC2

26 Chapter 5. Library API

EPDiy, Release 2.0.0

const EpdWaveform epdiy_ED097TC2

const EpdWaveform epdiy_ED060XC3

const EpdWaveform epdiy_ED060SCT

const EpdWaveform epdiy_ED133UT2

struct EpdWaveformPhases

Public Members

int phases

const uint8_t *luts

const int *phase_times
If we have timing information for the individual phases, this is an array of the on-times for each phase.
Otherwise, this is NULL.

struct EpdWaveformMode

Public Members

uint8_t type

uint8_t temp_ranges

EpdWaveformPhases const **range_data

struct EpdWaveformTempInterval

Public Members

int min

int max

struct EpdWaveform

5.3. Internals 27

EPDiy, Release 2.0.0

Public Members

uint8_t num_modes

uint8_t num_temp_ranges

EpdWaveformMode const **mode_data

EpdWaveformTempInterval const *temp_intervals

struct EpdGlyph
#include <epd_internals.h> Font data stored PER GLYPH.

Public Members

uint16_t width
Bitmap dimensions in pixels.

uint16_t height
Bitmap dimensions in pixels.

uint16_t advance_x
Distance to advance cursor (x axis)

int16_t left
X dist from cursor pos to UL corner.

int16_t top
Y dist from cursor pos to UL corner.

uint32_t compressed_size
Size of the zlib-compressed font data.

uint32_t data_offset
Pointer into EpdFont->bitmap.

struct EpdUnicodeInterval
#include <epd_internals.h> Glyph interval structure.

28 Chapter 5. Library API

EPDiy, Release 2.0.0

Public Members

uint32_t first
The first unicode code point of the interval.

uint32_t last
The last unicode code point of the interval.

uint32_t offset
Index of the first code point into the glyph array.

struct EpdFont
#include <epd_internals.h> Data stored for FONT AS A WHOLE.

Public Members

const uint8_t *bitmap
Glyph bitmaps, concatenated.

const EpdGlyph *glyph
Glyph array.

const EpdUnicodeInterval *intervals
Valid unicode intervals for this font.

uint32_t interval_count
Number of unicode intervals.

bool compressed
Does this font use compressed glyph bitmaps?

uint16_t advance_y
Newline distance (y axis)

int ascender
Maximal height of a glyph above the base line.

int descender
Maximal height of a glyph below the base line.

5.3. Internals 29

EPDiy, Release 2.0.0

5.4 Board-Specific Extensions

Board-specific functions that are only conditionally defined.

Functions

void epd_powerdown_lilygo_t5_47()
This is a Lilygo47 specific function

This is a work around a hardware issue with the Lilygo47 epd_poweroff() turns off the epaper completely however
the hardware of the Lilygo47 is different than the official boards. Which means that on the Lilygo47 this disables
power to the touchscreen.

This is a workaround to allow to disable display power but not the touch screen. On the Lilygo the epd power
flag was re-purposed as power enable for everything. This is a hardware thing.

Please use epd_poweroff() and epd_deinit() whenever you sleep the system. The following code can be used to
sleep the lilygo and power down the peripherals and wake the unit on touch. However is should be noted that the
touch controller is not powered and as such the touch coordinates will not be captured. Arduino specific code:

epd_poweroff();
epd_deinit();
esp_sleep_enable_ext1_wakeup(GPIO_SEL_13, ESP_EXT1_WAKEUP_ANY_HIGH);
esp_deep_sleep_start();

Warning: This workaround may still leave power on to epd and as such may cause other problems such as
grey screen.

void epd_powerdown() __attribute__((deprecated))

EPDiy is a driver board which talks to affordable E-Paper (or E-Ink) screens, which are usually sold as replacement
screens for E-Book readers. Why are they interesting?

• Easy on the eyes and paper-like aesthetics

• No power consumption when not updating

• Sunlight-readable

Ready-made DIY modules for this size and with 4bpp (16 Grayscale) color support are currently quite expensive. This
project uses Kindle replacement screens, which are available for 20$ (small) / 30$ (large) on ebay!

The EPDiy driver board targets multiple E-Paper displays. As the driving method for all matrix-based E-ink displays
seems to be more or less the same, only the right connector and timings are needed. The EPDiy PCB features a 33pin
and a 39pin connector, which allow to drive the following display types: ED097OC4, ED060SC4, ED097TC2

Getting Started

30 Chapter 5. Library API

EPDiy, Release 2.0.0

5.4. Board-Specific Extensions 31

EPDiy, Release 2.0.0

32 Chapter 5. Library API

INDEX

E
epd_ambient_temperature (C function), 20
EPD_BUILTIN_WAVEFORM (C macro), 14
epd_clear (C function), 20
epd_clear_area (C function), 20
epd_clear_area_cycles (C function), 20
epd_copy_to_framebuffer (C function), 20
epd_deinit (C function), 20
epd_difference_image (C function), 25
epd_difference_image_cropped (C function), 24
epd_draw_base (C function), 24
epd_draw_circle (C function), 21
epd_draw_hline (C function), 21
epd_draw_line (C function), 22
epd_draw_pixel (C function), 21
epd_draw_rect (C function), 22
epd_draw_rotated_image (C function), 25
epd_draw_rotated_transparent_image (C func-

tion), 25
epd_draw_triangle (C function), 22
epd_draw_vline (C function), 21
epd_fill_circle (C function), 22
epd_fill_circle_helper (C function), 21
epd_fill_rect (C function), 22
epd_fill_triangle (C function), 23
epd_font_properties_default (C function), 23
epd_full_screen (C function), 20
epd_fullclear (C function), 15
epd_get_display (C function), 19
epd_get_glyph (C function), 23
epd_get_pixel (C function), 25
epd_get_rotation (C function), 20
epd_get_string_rect (C function), 23
epd_get_text_bounds (C function), 23
epd_height (C function), 19
epd_hl_get_framebuffer (C function), 14
epd_hl_init (C function), 14
epd_hl_set_all_white (C function), 15
epd_hl_update_area (C function), 15
epd_hl_update_screen (C function), 14
epd_init (C function), 19
EPD_MODE_DEFAULT (C macro), 16

epd_powerdown (C function), 30
epd_powerdown_lilygo_t5_47 (C function), 30
epd_poweroff (C function), 20
epd_poweron (C function), 20
epd_push_pixels (C function), 24
epd_rotated_display_height (C function), 20
epd_rotated_display_width (C function), 20
epd_set_lcd_pixel_clock_MHz (C function), 25
epd_set_rotation (C function), 20
epd_set_vcom (C function), 19
epd_width (C function), 19
epd_write_default (C function), 23
epd_write_string (C function), 23
EpdDrawError (C enum), 18
EpdDrawError.EPD_DRAW_EMPTY_LINE_QUEUE (C

enumerator), 19
EpdDrawError.EPD_DRAW_FAILED_ALLOC (C enumer-

ator), 18
EpdDrawError.EPD_DRAW_GLYPH_FALLBACK_FAILED

(C enumerator), 18
EpdDrawError.EPD_DRAW_INVALID_CROP (C enumer-

ator), 18
EpdDrawError.EPD_DRAW_INVALID_FONT_FLAGS (C

enumerator), 19
EpdDrawError.EPD_DRAW_INVALID_PACKING_MODE

(C enumerator), 18
EpdDrawError.EPD_DRAW_LOOKUP_NOT_IMPLEMENTED

(C enumerator), 18
EpdDrawError.EPD_DRAW_MODE_NOT_FOUND (C enu-

merator), 19
EpdDrawError.EPD_DRAW_NO_DRAWABLE_CHARACTERS

(C enumerator), 18
EpdDrawError.EPD_DRAW_NO_PHASES_AVAILABLE (C

enumerator), 19
EpdDrawError.EPD_DRAW_STRING_INVALID (C enu-

merator), 18
EpdDrawError.EPD_DRAW_SUCCESS (C enumerator),

18
EpdDrawMode (C enum), 16
EpdDrawMode.MODE_A2 (C enumerator), 17
EpdDrawMode.MODE_DU (C enumerator), 16
EpdDrawMode.MODE_DU4 (C enumerator), 17

33

EPDiy, Release 2.0.0

EpdDrawMode.MODE_EPDIY_BLACK_TO_GL16 (C enu-
merator), 17

EpdDrawMode.MODE_EPDIY_MONOCHROME (C enumera-
tor), 17

EpdDrawMode.MODE_EPDIY_WHITE_TO_GL16 (C enu-
merator), 17

EpdDrawMode.MODE_GC16 (C enumerator), 16
EpdDrawMode.MODE_GC16_FAST (C enumerator), 16
EpdDrawMode.MODE_GL16 (C enumerator), 17
EpdDrawMode.MODE_GL16_FAST (C enumerator), 17
EpdDrawMode.MODE_GL16_INV (C enumerator), 17
EpdDrawMode.MODE_GL4 (C enumerator), 17
EpdDrawMode.MODE_INIT (C enumerator), 16
EpdDrawMode.MODE_PACKING_1PPB_DIFFERENCE (C

enumerator), 17
EpdDrawMode.MODE_PACKING_2PPB (C enumerator),

17
EpdDrawMode.MODE_PACKING_8PPB (C enumerator),

17
EpdDrawMode.MODE_UNKNOWN_WAVEFORM (C enumera-

tor), 17
EpdDrawMode.PREVIOUSLY_BLACK (C enumerator), 18
EpdDrawMode.PREVIOUSLY_WHITE (C enumerator), 17
EpdFont (C struct), 29
EpdFont.advance_y (C var), 29
EpdFont.ascender (C var), 29
EpdFont.bitmap (C var), 29
EpdFont.compressed (C var), 29
EpdFont.descender (C var), 29
EpdFont.glyph (C var), 29
EpdFont.interval_count (C var), 29
EpdFont.intervals (C var), 29
EpdFontFlags (C enum), 19
EpdFontFlags.EPD_DRAW_ALIGN_CENTER (C enumer-

ator), 19
EpdFontFlags.EPD_DRAW_ALIGN_LEFT (C enumera-

tor), 19
EpdFontFlags.EPD_DRAW_ALIGN_RIGHT (C enumera-

tor), 19
EpdFontFlags.EPD_DRAW_BACKGROUND (C enumera-

tor), 19
EpdFontProperties (C struct), 25
EpdFontProperties.bg_color (C var), 26
EpdFontProperties.fallback_glyph (C var), 26
EpdFontProperties.fg_color (C var), 26
EpdFontProperties.flags (C var), 26
EpdGlyph (C struct), 28
EpdGlyph.advance_x (C var), 28
EpdGlyph.compressed_size (C var), 28
EpdGlyph.data_offset (C var), 28
EpdGlyph.height (C var), 28
EpdGlyph.left (C var), 28
EpdGlyph.top (C var), 28
EpdGlyph.width (C var), 28

EpdInitOptions (C enum), 16
EpdInitOptions.EPD_FEED_QUEUE_32 (C enumera-

tor), 16
EpdInitOptions.EPD_FEED_QUEUE_8 (C enumerator),

16
EpdInitOptions.EPD_LUT_1K (C enumerator), 16
EpdInitOptions.EPD_LUT_64K (C enumerator), 16
EpdInitOptions.EPD_OPTIONS_DEFAULT (C enumer-

ator), 16
epdiy_ED047TC1 (C var), 26
epdiy_ED047TC2 (C var), 26
epdiy_ED060SC4 (C var), 26
epdiy_ED060SCT (C var), 27
epdiy_ED060XC3 (C var), 27
epdiy_ED097OC4 (C var), 26
epdiy_ED097TC2 (C var), 26
epdiy_ED133UT2 (C var), 27
EpdiyHighlevelState (C struct), 15
EpdiyHighlevelState.back_fb (C var), 15
EpdiyHighlevelState.difference_fb (C var), 15
EpdiyHighlevelState.dirty_lines (C var), 15
EpdiyHighlevelState.front_fb (C var), 15
EpdiyHighlevelState.waveform (C var), 15
EpdRect (C struct), 25
EpdRect.height (C var), 25
EpdRect.width (C var), 25
EpdRect.x (C var), 25
EpdRect.y (C var), 25
EpdRotation (C enum), 18
EpdRotation.EPD_ROT_INVERTED_LANDSCAPE (C

enumerator), 18
EpdRotation.EPD_ROT_INVERTED_PORTRAIT (C enu-

merator), 18
EpdRotation.EPD_ROT_LANDSCAPE (C enumerator),

18
EpdRotation.EPD_ROT_PORTRAIT (C enumerator), 18
EpdUnicodeInterval (C struct), 28
EpdUnicodeInterval.first (C var), 29
EpdUnicodeInterval.last (C var), 29
EpdUnicodeInterval.offset (C var), 29
EpdWaveform (C struct), 27
EpdWaveform.mode_data (C var), 28
EpdWaveform.num_modes (C var), 28
EpdWaveform.num_temp_ranges (C var), 28
EpdWaveform.temp_intervals (C var), 28
EpdWaveformMode (C struct), 27
EpdWaveformMode.range_data (C var), 27
EpdWaveformMode.temp_ranges (C var), 27
EpdWaveformMode.type (C var), 27
EpdWaveformPhases (C struct), 27
EpdWaveformPhases.luts (C var), 27
EpdWaveformPhases.phase_times (C var), 27
EpdWaveformPhases.phases (C var), 27
EpdWaveformTempInterval (C struct), 27

34 Index

EPDiy, Release 2.0.0

EpdWaveformTempInterval.max (C var), 27
EpdWaveformTempInterval.min (C var), 27

M
MINIMUM_FRAME_TIME (C macro), 26
MONOCHROME_FRAME_TIME (C macro), 26

Index 35

	About
	Display Types
	ED097OC4
	ED060SC4
	ED097TC2

	Getting Started
	Getting your Board
	Choosing and Finding Parts

	Calibrate VCOM
	Flashing the demo
	Use with esp-idf
	Selecting a Board and Display Type
	Enable SPI RAM

	Use with Arduino

	Fonts, Images, Waveforms
	Generating Font Files
	Generating Images
	Converting Waveforms

	Tips & Tricks
	Temperature Dependence
	Deep Sleep Current
	Adding a New Display

	Library API
	Highlevel API
	Colors

	Complete API
	Internals
	Board-Specific Extensions

	Index

